
Derivation of the KdV equation from 2D Euler

J.A. Biello

June 1, 2014

1 Preliminaries

I will begin with the Euler equations in the presence of gravity for flat layer
of constant density fluid over a flat bottom with infinite horizontal extent
and depth, D. If the acceleration of gravity is denoted by g then we non-
dimensionalize the spatial variables using D, the velocity using c =

√
gD

(which is the shallow water gravity wave speed) and the time using
√
D/g.

The fluid density, ρ∗ scales out of the problem and the pressure is non-
dimensionalized to the fluid density multiplied by the gravity wave speed
squared, ρ∗gD.

The momentum equation and incompressibility constraint are

ρ
[
ut + ~u · ~∇u

]
+ px = 0

ρ
[
wt + ~u · ~∇w

]
+ pz = −ρ

∇ · ~u = 0.

(1)

For a constant density, incompressible fluid, the density equation

ρt + ~∇ · (ρ~u) = 0 (2)

has a distributional (weak) solution

ρ(x, z, t) = Θ (F (x, z, t)) (3)

where
F (x, z, t) = 0 (4)
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is function which describes the interface of the fluid. The boundary condi-
tions are

p = 0 at F (x, z, t) = 0 (5)

i.e. the pressure vanishes at the top interface and

w = 0 at z = 0 (6)

i.e. the vertical velocity vanishes at the bottom boundary. In the asymptotic
derivation, we must focus on the case where the upper boundary is a single
valued function of x for all t, therefore

F (x, z, t) = 1 + h(x, t)− z (7)

and h(x, t) is called the height of the interface.

1.1 Kinematic condition for the interface

For a general interface, simply substitute (3) into (2) which yields

δ(F (x, z, t)) [Ft + uFx + wFz] = 0. (8)

This equation implies that F is advected by the velocity (u,w) on the inter-
face

Ft + uFx + wFz = 0 on F (x, z, t) = 0, (9)

which is called the kinematic condition of the interface. In the case where the
interface is a single valued function of x this further reduces to an equation
for the height

ht + uhx − w = 0 on z = 1 + h(x, t). (10)

1.2 Equilibrium

The equilibrium is given by

u = w = h = 0 (11)

so that the interface is at
z = 1 (12)

and the equilibrium pressure is

p = 1− z (13)
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2 Asymptotic Expansion

We seek solutions near the equilibrium, i.e. for small initial data. To this
end, we seek an asymptotic expansion and see if we can make it valid for
long times. Therefore substitute

u
w
p
h

 =


0
0

1− z
0

+ ε


u1

w1

p1

h1

+ ε2


u2

w2

p2

h2

+O(ε3) (14)

into equations (1) and (10) using the boundary conditions (5) and (6).
It is important to point out that the pressure boundary condition is eval-

uated on the moving interface,

p(x, 1 + h(x, t), t) = 0. (15)

Substituting the pressure boundary condition into the asymptotic expansion
we find

0 = p(x, 1 + εh1(x, t) + ε2h2(x, t) +O(ε2), t)

= 1− 1− εh1 − ε2h2 + ...

εp1(x, 1 + εh1 + ε2h2, t) + ε2p2(x, 1 + εh1 + ε2h2, t) +O(ε3)

= −εh1 − ε2h2 + εp1(x, 1, t) + ε2h1p1,z(x, 1, t) + ε2p2(x, 1, t) +O(ε3).

where p1,z is the z-partial derivative of p1. Collecting the terms order by
order we find the boundary conditions

p1(x, 1, t) = h1(x, t) (16)

and
p2(x, 1, t) = h2(x, t)− h1(x, t) p1,z(x, 1, t). (17)

Thankfully, the vertical velocity boundary condition at the lower bound-
ary is much easier

wi(x, 0, t) = 0 ∀i (18)

since it is a fixed boundary.
These kinds of free boundary problems constitute an exceedingly interest-

ing and, as of yet not completely explored, class of problems; KdV notwith-
standing.
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2.1 O(ε): Linear Theory

Carefully exploring the linear theory of a non-linear problem is truly the
most important step. The structure of the spectrum of the linear operator
and the eigenfunctions will tell you almost everything you need to know to
make progress in the asymptotic expansion.

The equations are O(ε) are

∂tu1 + ∂xp1 = 0

∂tw1 + ∂zp1 = 0

∂xu1 + ∂zw1 = 0

∂th1 − w1 = 0

(19)

where it must be emphasized that the first three equations apply in 0 ≤ z ≤ 1
whereas the fourth equation is evaluated at z = 1. I have also changed the
notation so that the partial derivatives don’t get mixed up with the subscripts
of the orders. The boundary conditions are

p1(x, 1, t) = h1(x, t) and w1(x, 0, t) = 0 (20)

2.1.1 Stationary vortex solutions

There are 2 types of solutions to these equations - this corresponds to the
Hodge Weyl decomposition that I mentioned in class. The first class are
“vorticity” solutions and have zero vertical velocity at the top boundary. It
is straightforward to show that, for these solutions, there is a streamfunction
ψ such that

u1 = −∂zψ
w1 = ∂xψ

(21)

so that (u1, w1) automatically satisfy the incompressibility constraint ∂xu1 +
∂zw1 = 0. By taking the curl of the first two equations in (19), we find

∂t
(
∂2
xxψ + ∂2

zzψ
)

= 0. (22)

Further requiring w1(x, 1, t) = 0 means that

∂th1 = 0. (23)
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Therefore these vorticity solutions correspond to stationary (time indepen-
dent) flows. The stream function is

ψ = ψ̃n,k sin(nπz) cos(k(x− x0)) (24)

for any n integer and any real values of k, x0 and amplitude ψ̃n,k. Each of
these stream functions correspond to a circulation below the surface of the
fluid. In an ideal (Euler) fluid, such a circulation is time independent.

These stream function solutions do not generate surface waves (at least
at lowest order) and are not the solutions we are interested in. (Notice, also,
that these solutions have a significant amplitude at all depths in the fluid -
the solutions we are interested are surface waves whose velocity field decays
sharply away from the top boundary).

2.1.2 Linear surface waves

Taking the divergence of the first two equations in (19) and applying the
divergence-free constraint we find

∂2
xxp1 + ∂2

zzp1 = 0 (25)

in 0 < z < 1, −∞ < x <∞. Since the whole problem is a system of linear,
constant coefficient PDEs and the domain is unbounded in x, we can Fourier
transform in x, or equivalently seek wave-like solutions

p1(x, z, t) = p̃1(z; k) ei(kx−ωt) (26)

which, upon substituting into (25) and (20) yields the boundary value prob-
lem

d2p̃1

dz2
− k2p̃1 = 0 (27)

with the boundary condition to be explained in a moment. The solutions
to this equation are exponentials; it is convenient to combine them into
hyperbolic sines and cosines, and we write

p̃1 = p̃+
1 cosh(k(z − 1)) + p̃−1 sinh(k(z − 1)) (28)

for any constants, p̃+
1 , p̃

−
1 ; since the boundary conditions on p1 will be applied

at z = 1, I have written the functions as functions of z − 1. Combining with
(26) we find

p1(x, z, t) = ei(kx−ωt)
[
p̃+

1 cosh(k(z − 1)) + p̃−1 sinh(k(z − 1))
]

(29)
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where the tilde variables depend on k and correspond to the Fourier transform
of the initial data.

Fourier transforming the remaining variables, we have

u1 = ei(kx−ωt) ũ1(z; k)

w1 = ei(kx−ωt) w̃1(z; k)

h1 = ei(kx−ωt) h̃1(k)

(30)

which, upon substituting in (19) and (20) we find

−iωũ1 + ik
[
p̃+

1 cosh(k(z − 1)) + p̃−1 sinh(k(z − 1))
]

= 0

−iωw̃1 + k
[
p̃+

1 sinh(k(z − 1)) + p̃−1 cosh(k(z − 1))
]

= 0

ikũ1 +
dw̃1

dz
= 0

−iωh̃1 − w̃1(1; k) = 0

w̃1(0; k) = 0

p̃+
1 = h̃1.

(31)

Though the notation can get cumbersome, in principle this is simply a matrix
problem for the Fourier coefficients. Solving for ũ1 from the first equation

ũ1 =
k

ω

[
p̃+

1 cosh(k(z − 1)) + p̃−1 sinh(k(z − 1))
]

(32)

and for w̃1

w̃1 = −i k
ω

[
p̃+

1 sinh(k(z − 1)) + p̃−1 cosh(k(z − 1))
]
. (33)

Notice that the third equation in (31) is automatically satisfied by these
solutions since this equation (the incompressibility constraint) was used to
construct the elliptic problem for p1 in equation (25) from which this solution
arose. Now, eliminating h̃1 from the fourth equation and substituting for w̃1

in the fourth and fifth equations we find

−iωp̃+
1 + i

k

ω
p̃−1 = 0

−p̃+
1 sinh(k) + p̃−1 cosh(k) = 0

(34)
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Figure 1: Dispersion relation for linear surface waves. Blue (red) branch
corresponds to right (left) going waves. As k → 0

or written as a matrix[
−ω k

ω

sinh(k) − cosh(k)

] [
p̃+

1

p̃−1

]
= 0 (35)

Of course, the matrix must be singular for a solution to exist; setting the
determinant to zero yields

ω cosh(k)− k sinh(k)

ω
= 0.

The solution to this equation is called the dispersion relation and relates the
frequency of a wave to its wavenumber

ω = ω(k) = ±
√
k tanh(k). (36)

Notice that there are two solutions, known as “branches” of the dispersion
relation. These correspond to rightward and leftward propagating waves,
respectively and are plotted in figure 1.

Regarding the eigenvector, we find

p̃−1 = tanh(k) p̃+
1 = tanh(k) h̃1. (37)
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After a bit of algebra (and using the addition formula for hyperbolic sine
and cosine), we can show that the components of the linear eigenfunction are


u1

w1

p1

h1

 = h̃1 e
i(kx−ωt)


±
√

k
tanh(k)

cosh(kz)
cosh(k)

∓i
√

k
tanh(k)

sinh(kz)
cosh(k)

cosh(kz)
cosh(k)

1

 . (38)

A lot of things can be said here. The positive/negative signs correspond to
right and left going waves, respectively. I have chosen to scale everything to
the actual height of the wave, h̃1 at each wavenumber. The fields u, p, h are
all in phase with one another whereas w (as evidenced by the multiplication
by i) is π/2 out of phase with the others. This means that where the height
is maximum, so too is the pressure and horizontal velocity, but the vertical
velocity is zero. Conversely, when the height is zero, so too are the pressure
and horizontal velocity, but the vertical velocity is maximum.

2.1.3 Shallow and deep water limits

The limit of long waves is the shallow water limit from which will arise KdV.
A layer is considered shallow if the wavelength of the wave is longer than
the depth of the layer - this is the limit k � 1. In this limit the dispersion
relation becomes

ω ≈ ±k (39)

which correspond to non-dispersive waves traveling to the right or the left.
Non-dispersive waves are those that we have most experience with, i.e. light
and sound at the audible frequencies. The eigenfunction in this limit is

u1

w1

p1

h1

 ≈ h̃1 e
i(kx−ωt)


±2−(kz)2

2−k2

∓i kz
2−k2

2−(kz)2

2−k2

1

 ≈ h̃1 e
ik(x∓t)


±1
∓ikz

1
1

 . (40)

This last result merits a comment or two. In the limit of long waves (or
shallow water), the horizontal velocity and pressure are nearly constant as a
function of height in the fluid layer. On the other hand, the vertical velocity
is a linear function of height in this limit. Moreover, the vertical velocity at
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the top of the layer is O(k) (remembering that we are in the k � 1 limit)
despite the fact that all of the other fields are O(1). This structure of the
eigenfunction is what is exploited to create the long wave scaling.

The deep water limit occurs when k � 1 in which case

ω = ±
√
k. (41)

Without getting into the details, this result implies that shorter waves travel
more slowly than longer waves - something that can be directly observed
when staring longingly at the sea while standing on the California bluffs
above the Pacific Ocean. With a little algebra you can see that

u1

w1

p1

h1

 ≈ h̃1 e
i(kx−ωt)


±
√
k ek(z−1)

∓i
√
k ek(z−1)

ek(z−1)

1

 . (42)

In the deep water limit, the velocity fields and pressure perturbation decay
exponentially away from the surface of the water. Moreover, for a fixed height
of the wave, both components of the velocity are O(

√
k) stronger than the

pressure and height perturbations.
So we conclude, shallow water waves really “feel the bottom” of the basin

they travel in. Deep water waves decay exponentially with depth in the basin.
The difference between shallow and deep water waves is not due to their
amplitude (since this is linear theory, it cannot be about their amplitude)
but rather it is due to their wavelength; shallow (deep) water waves have
wavelengths larger (less) than the depth of the basin.

3 Long Wave Scaling

Consider a function f(x) which is o(1) everywhere in x (i.e. maxx|f(x)| ≤ 1).
Consider the Fourier transform

f(x) =

∫
R

f̃(k)eikx dk (43)

and the derivative
d

dx
f(x) =

∫
R

ik f̃(k)eikx dk (44)
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Now let us suppose that f̃ has support over long wavelengths, i.e. small
k. Using the Fourier transform of the derivative, it is straightforward to
estimate

max
d

dx
f(x) < [max k] [maxxf(x)] . (45)

Now this is a little sloppy and there are caveats everywhere, but the point
is, if the function is supported on small wavenumbers, then the derivative is
much smaller than the function.

This motivates a long wave scaling as follows. We introduce a scaled
variable, X

x =
X

δ
(46)

where δ � 1. We will imagine that all functions f(x) can be written f(X/δ)
therefore

∂

∂x
f = δ

∂

∂X
f where

∂

∂X
f ∼ O(1). (47)

This is equivalent to supposing that the Fourier transform of f is supported
at small wavenumbers.

Notice that in the long wave limit k ∼ δ and from the dispersion relation
at long wavelengths, equation (39), we see that

ω ∼ δ. (48)

This suggests a long time scaling for the time derivatives

t =
T

δ
(49)

consequently the time derivatives become

∂

∂t
f = δ

∂

∂T
f where

∂

∂T
f ∼ O(1). (50)

Lastly we look at the eigenfunction in equation (40). We see that, for
O(1) perturbations of the height (i.e. h̃1 ∼ O(1) the eigenvector has O(1)
pertubations of the horizontal velocity and the pressure. However, the max-
imum vertical velocity, which occurs at z = 1 is O(k) ∼ δ � 1. This
motivates the scaling of the variables

u
w
p
h

→


u
δw
p
h

 . (51)
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Substituting the new variables into equations (1) and (10) and canceling
some powers of δ yields

∂u

∂T
+ u

∂u

∂X
+ w

∂u

∂z
+

∂p

∂X
= 0

δ2

[
∂w

∂T
+ u

∂w

∂X
+ w

∂w

∂z

]
+
∂p

∂z
= −1

∂u

∂X
+
∂w

∂z
= 0

∂h

∂T
+ u

∂h

∂X
− w = 0

(52)

with boundary conditions

w = 0 on z = 0

p = 0 on z = 1 + h(X,T ).
(53)

and keeping in mind that the third equation in (52) is to be evaluated only
at the upper surface. Together (52) and (53) constitute the long wave scaled
surface water equations.

As a last step, I introduce the weakly non-linear assumption. Instead
of doing the full asymptotic expansion of the previous section, I will only
introduce the perturbation; that is to say, I will seek solutions which are
near the equilibrium

u→ εu

w → εw

p→ 1− z + εp

h→ εh

(54)

where I am simply replacing the original variables by their ε rescaled coun-
terparts. Technically this is the assumption we make on the initial data; i.e.
that initial perturbations have amplitude ε. However, the idea is to ensure
that the asymptotic expansion maintains this assumption for a “long time”.
Substituting (54) into the long wave equations (52) and their boundary con-
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ditions (53) yields the weakly nonlinear long wave equations

∂u

∂T
+

∂p

∂X
= −ε

[
u
∂u

∂X
+ w

∂u

∂z

]
∂p

∂z
= −δ2

[
∂w

∂T

]
− εδ2

[
u
∂w

∂X
+ w

∂w

∂z

]
∂u

∂X
+
∂w

∂z
= 0

∂h

∂T
− w = −ε

[
u
∂h

∂X

]
(55)

with boundary conditions

w = 0 on z = 0

p = h on z = 1 + εh(X,T )
(56)

where, again, the height equation is to be only evaluated at the upper surface.

3.1 Linear theory of the long wave scaling

In the limit δ → 0 and ε→ 0 the linear long wave equations are

∂u

∂T
+

∂p

∂X
= 0

∂p

∂z
= 0

∂u

∂X
+
∂w

∂z
= 0

∂h

∂T
− w = 0

(57)

with boundary conditions

w = 0 on z = 0

p = h on z = 1.
(58)

3.1.1 Linear energy

This is an energy conserving system and we can define the (linear) energy as
follows. Multiply the first equation in (57) by u, the second by w, add them
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together and integrate

0 =

∫ 1

0

∫ ∞
−∞

[
u
∂u

∂T
+ u

∂p

∂X
+ w

∂p

∂z

]
dxdz

=

∫ 1

0

∫ ∞
−∞

[
1

2

∂ (u2)

∂T
+
∂ (up)

∂X
+
∂ (wp)

∂z

]
dXdz using incompressibility

=
d

dT

∫ 1

0

∫ ∞
−∞

u2

2
dXdz +

∫ 1

0

(u p)

∣∣∣∣X→∞
X→−∞

dz +

∫ ∞
−∞

(wp)

∣∣∣∣z=1

z=0

dX

using Green’s theorem. Now, assuming that the solutions are either periodic
in x or that they decay rapidly enough (i.e. are L2) then we can neglect the
second integral in the above expression. The third integral is simplified by
using the boundary conditions at the bottom (w = 0) and top (p = h) of the
layer. The expression simplifies to

0 =
d

dT

∫ 1

0

∫ ∞
−∞

u2

2
dXdz +

∫ ∞
−∞

w(x, 1, t)h(x, t) dX. (59)

Now add to this expression h times the third equation in (57) integrated
over x. After the dust settles, the wh terms cancel and we are left with the
conservation of energy, i.e.

E ≡
∫ ∞
−∞

{[∫ 1

0

u2

2
dz

]
+ h2

}
dX = constant. (60)

3.1.2 Solution of the linear long wave equations

I now solve the linear long wave dynamics in equation (57). Notice that, since
p is not a function of z from the second equation in (57), then nor can u be
a function of z. Applying the upper boundary condition on the pressure, we
find

p = h for all z (61)

where, again, the height equation is to be only evaluated at the upper surface.
Therefore, we can integrate the incompressibility constraint with respect

to z and applying the lower boundary condition we find

w = −z ∂u

∂X
. (62)

13



Upon eliminating w from the fourth equation and p from the first equation
we find

∂u

∂T
+
∂h

∂X
= 0

∂h

∂T
+
∂u

∂X
= 0.

(63)

Subtracting the X derivative of the first equation from the T derivative of
the second equation, we find the wave equation

∂2h

∂T 2
− ∂2h

∂X2
= 0 (64)

for which we have the D’Alembert solution

h(x, t) =
h0(X + T ) + h0(X − T )

2
+

1

2

∫ X+T

X−T
v0(s) ds (65)

where v0(X) is the initial velocity of the interface, in this example

v0(X) =
∂h

∂T

∣∣∣∣
T=0

= −∂u0

∂X
. (66)

where u0(X) is the initial horizontal velocity. Therefore, we can perform the
integral in (65) to find

h(x, t) =
[h0(x+ T ) + h0(X − T )]− [u0(X + T )− u0(X − T )]

2
(67)

Another way to construct the solution to (63) is to define the Riemann
invariants,

R =
u+ h

2

L =
u− h

2

(68)

and, upon adding and subtracting the equations in (63) we find

∂R

∂T
+
∂R

∂X
= 0

∂L

∂T
− ∂L

∂X
= 0

(69)
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which are two, decoupled, transport equations for the left going wave, L, and
the right going wave, R. The solutions are

R(X, t) = R0(X − T ) =
u0(X − T ) + h0(X − T )

2

L(X,T ) = L0(X + T ) =
u0(X + T )− h0(X + T )

2

(70)

for any initial functions, h0(X), u0(X). Subtract R and L in (70) then divid-
ing by 2 to yield the solution for the height of the wave in (67). To get the
horizontal velocity, add R and L and divide by two.

3.1.3 Solvability condition for a forced transport equation

Consider the rightward transport equation forced by a specified forcing

∂R

∂T
+
∂R

∂X
= F (X,T ). (71)

Defining the characteristics

ξ = X − T, η = X + T (72)

we find

∂

∂ξ
= − ∂

∂T
+

∂

∂X
∂

∂η
=

∂

∂T
+

∂

∂X

(73)

so that the forced transport equation (71) becomes

∂R

∂η
= F

(
η + ξ

2
,
η − ξ

2

)
(74)

Therefore the transport equations have bounded solutions if∣∣∣∣∫ ∞
−∞

F

(
η + ξ

2
,
η − ξ

2

)
dη

∣∣∣∣ <∞ ∀ ξ. (75)

That is to say, solutions are well behaved if the integral along each charac-
teristic remains finite.

15



Another way to think of this is to consider the linear equation

∂R

∂η
= G(ξ, η) (76)

multiply by an (as of yet) arbitrary function R†(ξ, η) and integrate over all
ξ, η ∫ ∫

R2

R†
∂R

∂η
dξdη =

∫ ∫
R2

R†G(ξ, η) dξdη (77)

Integrating this expression by parts we find the adjoint problem∫
R

R†R

∣∣∣∣η→∞
η→−∞

dξ −
∫ ∫

R2

R
∂R†

∂η
dξdη =

∫ ∫
R2

R†G(ξ, η) dξdη. (78)

Using compact initial data for R means

lim
η→−∞

R(ξ, η) = 0. (79)

And if we define the adjoint linear operator

−∂R
†

∂η
= 0 (80)

then the integral simplifies to∫
R

R†R

∣∣∣∣η→∞ dξ =

∫ ∫
R2

R†G(ξ, η) dξdη. (81)

so that solutions, R(ξ, η) remain bounded if the integral on the right hand
side of (81) remains bounded for all solutions R†(ξ, η) of (80). Notice that
the adjoint eigenfunction (the solution of of (80)) is

R†(ξ, η) = Ψ(ξ) (82)

for any well behaved function Ψ(ξ). Substituting this solution into (81) yields∫
R

Ψ(ξ)R

∣∣∣∣η→∞ dξ =

∫ ∫
R2

Ψ(ξ)G(ξ, η) dξdη. (83)

for all well behaved (i.e. compactly supported) functions Ψ(ξ). In particular,
we usually think of the δ-function as appropriate test functions, whereby

Ψ(ξ) = δ(ξ − ξ∗) ∀ ξ, ξ∗ (84)
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and using these test functions in (83) the ξ integral simplifies to yield

lim
η→∞

R(ξ∗, η) =

∫ ∞
−∞

G(ξ∗, η) dη (85)

Therefore solutions R(ξ, η) are well behaved as η →∞ if∣∣∣∣∫ ∞
−∞

G(ξ, η) dη

∣∣∣∣ <∞ ∀ ξ (86)

which is the same condition as (75).
Of course an equivalent solvability condition applies to the left-going

waves.

3.1.4 Solvability condition for the linear long wave equations

In order to construct the adjoint of the long wave linear operator, take the
system of equations (57) - but include inhomogeneous terms on the right
hand side of each equation as we did for the transport equation above;
Fu, Fw, Fp, Fh denote the “forcings” on each of the equations in (57). Now
multiply the first by u†(X, z, T ), the second by w†(X, z, T ) the third by
h†(X,T ) and the fourth by p†(X, z, T ). The functions with daggers will
turn out to be the adjoint eigenfunctions. Add the resulting equations and
integrate over the whole domain and all time to find∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

{
u†
∂u

∂T
+ u†

∂p

∂X
+ w†

∂p

∂z
+ h†

∂h

∂T
− h†w + p†

∂u

∂X
+ p†

∂w

∂z

}
dTdXdz

=

∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

{
u†Fu + w†Fw + p†Fp + h†Fh

}
dTdXdz

where I have used the fact that the integral over z on the h equation is equal
to one in order to write the expression most concisely. Notice that this is the
same exercise used to construct the energy and when the daggered quantities
are equal to their non-daggered counterparts, this expression would reproduce
conservation of energy in the absence of the inhomogeneous terms.
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Now integrate the right hand side of this expression by parts∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

{
−u∂u

†

∂T
− p∂u

†

∂X
− p∂w

†

∂z
− h∂h

†

∂T
− u∂p

†

∂X
− w∂p

†

∂z

}
dTdXdz

+

∫ ∞
−∞

∫ ∞
−∞

{
−w(1)h† + w†(1) p(1)− w†(0) p(0) + p†(1)w(1)− p†(0)w(0)

}
dTdX

+

∫ 1

0

∫ ∞
−∞

[
u†u+ h†h

]∣∣∣∣T→∞
T→−∞

dXdz +

∫ 1

0

∫ ∞
−∞

[
u†p+ p†u

]∣∣∣∣X→∞
X→−∞

dTdz

=

∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

{
u†Fu + w†Fw + p†Fp + h†Fh

}
dTdXdz

where the function evaluations in the second line indicate the z values. Notice
that for compact initial data, u, p the last integral in the third line vanishes.
The idea is to determine the conditions for which the second last integral
in the third line also remains finite; let us denote this integral with a I
for “increase”, since it corresponds to the increase of the solution after the
interaction of waves.

Rearranging the terms and applying the lower boundary condition on w
and upper boundary condition on p the expression for the increase becomes

I −
∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

{
u

[
∂u†

∂T
+
∂p†

∂X

]
+ w

[
∂p†

∂z

]
+ p

[
∂u†

∂X
+
∂w†

∂z

]}
dTdXdz

+

∫ ∞
−∞

∫ ∞
−∞

{
−h
[
∂h†

∂T
− w†(1)

]
− w(1)

[
h† − p†(1)

]
− p(0)

[
w†(0)

]}
dTdX

=

∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

{
u†Fu + w†Fw + p†Fp + h†Fh

}
dTdXdz.

(87)

This demonstrates the construction of the adjoint to the linear operator in
(57); by setting the terms in square parentheses independently to zero, we
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have the adjoint linear operator (and its boundary conditions)

∂u†

∂T
+
∂p†

∂X
= 0

∂p†

∂z
= 0

∂u†

∂X
+
∂w†

∂z
= 0

∂h†

∂T
− w†(1) = 0

w†(0) = 0

h† − p†(1) = 0

(88)

and have shown that, if the daggered quantities are solutions of (88), then
the increase integral is

I =

∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

{
u†Fu + w†Fw + p†Fp + h†Fh

}
dTdXdz (89)

It is clear that the equations and boundary conditions for the adjoint of
the linear operator (88) are identical to those of the original linear operator
(57). In fact, they appear in the integral in (87) with a negative sign. Such
a linear operator is said to be skew self-adjoint, meaning the adjoint is the
negative of the original linear operator. In such examples, the eigenvalues are
purely imaginary - and in this case correspond to neutrally stable waves. The
beauty of a skew self-adjoint operator is that if one solves the original linear
operator, then that eigenfunction is also an eigenfunction of the adjoint.

Finally, we seek solutions whose increase (after the interaction of the
waves) remains finite, therefore

I <∞ =⇒∣∣∣∣∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

{
u†Fu + w†Fw + p†Fp + h†Fh

}
dTdXdz

∣∣∣∣ <∞ (90)

when the daggered quantities are solutions of (88). This is the solvability
condition of the linear operator in the presence of inhomogeneous terms.
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3.1.5 Explicit, real valued solution of the linear operator and its
adjoint

Piecing together everything we have developed the solution of the long wave
equations is
u
w
p
h

 =
1

2


−h0(X + T ) + h0(X − T ) + u0(X + T ) + u0(X − T )
−z [−h′0(X + T ) + h′0(X − T ) + u′0(X + T ) + u′0(X − T )]

h0(X + T ) + h0(X − T )− u0(X + T ) + u0(X − T )
h0(X + T ) + h0(X − T )− u0(X + T ) + u0(X − T )



=
1

2


u0(X + T )− h0(X + T )
−z [u′0(X + T )− h′0(X + T )]
− [u0(X + T )− h0(X + T )]
− [u0(X + T )− h0(X + T )]

+
1

2


u0(X − T ) + h0(X − T )
−z [u′0(X − T ) + h′0(X − T )]
u0(X − T ) + h0(X − T )
u0(X − T ) + h0(X − T )


(91)

where primes denote derivatives with respect to the argument. Substituting
R0 and L0 

u
w
p
h

 =


L0(X + T )
−zL′0(X + T )
−L0(X + T )
−L0(X + T )

+


R0(X − T )
−zR′0(X − T )
R0(X − T )
R0(X − T )

 . (92)

We conclude that for any two initial functions R0(X), L0(X), or equivalently
h0(X), u0(X) the solution is given by (92), or equivalently, (91).

Just as the solution to the linear problem consists of a superposition
of two functions given in (92), so two there are two eigenfunctions of the
adjoint problem. For any functions Ψ+(X) and Ψ−(X) the eigenfunctions of
the adjoint are

Ψ+(X − T )
−zΨ′+(X − T )

Ψ+(X − T )
Ψ+(X − T )

 and


Ψ−(X + T )
−zΨ′−(X + T, )
−Ψ−(X + T )
−Ψ−(X + T )

 . (93)

3.2 Multiple scales theory of the weakly nonlinear long
wave equations

Anticipating that an asymptotic expansion of the solution will break down
at second order because of resonant interactions from the nonlinear terms,
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we pose a multiple time scale expansion as follows. Introduce a long time
scale

τ = εT (94)

so that all of the derivatives with respect to time in (55) become

∂

∂T
−→ ∂

∂T
+ ε

∂

∂τ
. (95)

Substituting (95) intoe (55) yields the multiple time scale, weakly nonlinear
long wave equations

∂u

∂T
+

∂p

∂X
= −ε

[
∂u

∂τ
+ u

∂u

∂X
+ w

∂u

∂z

]
∂p

∂z
= −δ2

[
∂w

∂T

]
− εδ2

[
∂w

∂τ
+ u

∂w

∂X
+ w

∂w

∂z

]
∂u

∂X
+
∂w

∂z
= 0

∂h

∂T
− w = −ε

[
∂h

∂τ
+ u

∂h

∂X

]
(96)

which come with the boundary conditions

w = 0 on z = 0

p = h on z = 1 + εh(X,T ).
(97)

Notice that I have switched the order of the height and divergence equation
in (96) so that it matches the order of the adjoint eigenfunction in (92).

3.2.1 Distinguished limit

There are two small parameters in this problem; δ measures the ratio of the
depth of the layer to typical length scales in the horizontal while ε measures
the ratio of the initial horizontal velocity to the shallow water wave speed.
The lowest order terms on the right hand side of (96) are either ε or δ2.
Since we expect (and it will be the case) that the solvability condition will
be applied at first order in the perturbation theory and we would like to
create a theory in which linear terms balance the non-linear terms (called
“dispersion balanced nonlinearity”), we seek a distinguished limit where

δ2 ∼ ε specifically δ2 = ε. (98)
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3.2.2 Asymptotic expansion

We now pose a regular asymptotic expansion for the variables
u
w
p
h

 =


u0

w0

p0

h0

+ ε


u1

w1

p1

h1

+O(ε3) (99)

which differs from the expression (14) because of the redefinition of the vari-
ables in the weakly non-linear long wave equations (55).

3.2.3 O(ε0):

At this order, we have the linear long wave theory all over again, except now
there is no restriction on the behavior of the wave with respect to the long
time variable, τ . The solution is given by (92) with the additional flexibility
that the functions L0 and R0 can depend on τ also

u0

w0

p0

h0

 =


L0(X + T, τ)
−zL′0(X + T, τ)
−L0(X + T, τ)
−L0(X + T, τ)

+


R0(X − T, τ)
−zR′0(X − T, τ)
R0(X − T, τ)
R0(X − T, τ)

 . (100)

We focus on compactly supported initial data, which means that both L0

and R0 are L2 functions in X.

3.2.4 O(ε1):

Notice that εδ2 = ε2 so that the nonlinear term on the right hand side of the
vertical velocity equation is higher order. The first order equations are

∂u1

∂T
+
∂p1

∂X
= −

[
∂u0

∂τ
+ u0

∂u0

∂X
+ w0

∂u0

∂z

]
∂p1

∂z
= −

[
∂w0

∂T

]
∂u1

∂X
+
∂w1

∂z
= 0

∂h1

∂T
− w1 = −

[
∂h0

∂τ
+ u0

∂h0

∂X

]
(101)
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with boundary conditions

w1 = 0 at z = 0

p1 = h1 − h0
∂p0
∂z

at z = 1.
(102)

But p0 is independent of z, so the last boundary condition simplifies to

p1 = h1 at z = 1. (103)

So the linear operator at first order is exactly the linear operator at lowest
order. The first order equations are forced by the lower order wave (on
the right hand side). Therefore, to solve this problem, we require that the
projection of the right hand side of (101) on either adjoint eigenfunction in
(93) for any functions Ψ±(X) must equal zero.

There are five types of terms on the right hand side of (101):

1. Linear functions of R0(X − T )

2. Linear functions of L0(X + T )

3. Quadratic nonlinear functions of R0(X − T )

4. Quadratic nonlinear functions of L0(X + T )

5. Quadratic nonlinear functions that look like L0(X + T )R′0(X − T ) or
L′0(X + T )R0(X − T ).

What these mean, physically, is that the first order problem is forced by the
rightward wave (1 and 3), the leftward wave (2 and 4) and the interaction
of the rightward and leftward wave (5 above). When we project against the
adjoint eigenfunction we will need to consider integrals of the form∫ ∫

R2

Ψ±(X ∓ T )F (X,T ) dTdX (104)

where F (X,T ) represents on of the five types of terms listed above.
For the terms which fall under 1 and 3 above, the forcing by the rightward

wave, F (X,T ) = f(X − T ) and the integrals become∫ ∫
R2

Ψ±(X ∓ T )f(X − T ) dTdX. (105)
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Defining the right and leftward characteristics

ξ = X − T, η = X + T (106)

so that

dT dX =
1

2
dξ dη. (107)

The two types of integrals in (105) become∫ ∫
R2

Ψ+(ξ)f(ξ) dξdη and

∫ ∫
R2

Ψ−(η)f(ξ) dξdη (108)

For compactly supported initial data, f(X) is integrable. Moreover, we
consider compactly supported, integrable functions, Ψ±(X) (such as the δ-
function). Therefore the second integral in (108) is∣∣∣∣∫ ∫

R2

Ψ−(η)f(ξ) dξdη

∣∣∣∣ =

∣∣∣∣[∫
R

Ψ−(η) dη

]∣∣∣∣ ∣∣∣∣[∫
R

f(ξ) dξ

]∣∣∣∣ <∞ (109)

since both of the functions Ψ−, f are integrable.
However, the first integral is insidious since∫ ∫

R2

Ψ+(ξ)f(ξ) dξdη =

∣∣∣∣[ lim
a→∞

∫ a

−a
dη

]∣∣∣∣ ∣∣∣∣[∫
R

Ψ+(ξ)f(ξ) dξ.

]∣∣∣∣ (110)

Now, the second integral in this expression exists; for example if we let
Ψ(ξ) = δ(ξ − ξ∗) then it evaluates to f(ξ∗). However, the first integral
does not exist! Therefore, in order that the “increase” remain bounded we
require

f(ξ) = 0 ∀ξ (111)

A similar argument can be made for the terms of the form 2 and 4 from
the right hand side of (101). If we denote these terms by g(X + T ) = g(η)
then the integrals become∫ ∫

R2

Ψ+(ξ)g(η) dξdη and

∫ ∫
R2

Ψ−(η)g(η) dξdη (112)

and now the second integral does not exist unless

g(η) = 0 ∀η. (113)
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Finally, let us denote the terms of the form 5 as γ(X+T,X−T ) = γ(ξ, η)
and consider the integrals∫ ∫

R2

Ψ+(ξ)γ(ξ, η) dηdξ and

∫ ∫
R2

Ψ−(η)γ(ξ, η) dξdη. (114)

Since the integral of γ with respect to either of its arguments exists and is
finite, then these integrals simplify to∫ ∫

R

Ψ+(ξ)α(ξ) dξ and

∫ ∫
R

Ψ−(η)β(η) dη (115)

and since Ψ± are both compactly supported, then each of these integrals is
finite.

We conclude that there are only two solvability conditions for (101)

• The projection of the righthand side of (101) against arbitrary right-
ward moving wave profiles is zero, i.e. f(ξ) = 0 for all ξ.

• The projection of the righthand side of (101) against arbitrary leftward
moving wave profiles is zero, i.e. g(η) = 0 for all η.

3.2.5 The Korteweg-deVries Equation

Each of the solvability conditions will give a KdV equation for either the
right moving or the left moving wave. I will focus on the right moving wave
as the argument (as we have seen above) is the same for the left moving wave.
Substitute the expression for the right going wave from equation (100) into
left hand side of equation (101) and project on the adjoint eigenfunction Ψ+

from equation (93)

−
∫ 1

0

∫ ∫
R2

{
Ψ+(ξ)

[
∂R0(ξ, τ)

∂τ
+R0(ξ, τ)

∂R0(ξ, τ)

∂ξ

]
...

− zdΨ+(ξ)

dξ

[
z
∂2R0(ξ, τ)

∂ξ2

]
...

+Ψ+(ξ)

[
∂R0(ξ, τ)

∂τ
+R0(ξ, τ)

∂R0(ξ, τ)

∂ξ

]}
dξdηdz < ∞

(116)
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notice that I have split the lines to emphasize from which line in the equa-
tions the terms arose. Also, I have used the fact that, for the lowest order
eigenfunction

∂u0

∂z
= 0 (117)

and
∂w0

∂T
= zR′′0(ξ, τ) = z

∂2R0(ξ, τ)

∂ξ2
(118)

to simplify the expression. Note again that primes denote derivatives with
respect to the first argument, which is ξ; i.e. the variable describing the
characteristic. Collecting terms, cancelling the leading negative sign and
performing the z-integration, (116) becomes∫ ∫

R2

{
2Ψ+(ξ)

[
∂R0(ξ, τ)

∂τ
+R0(ξ, τ)

∂R0(ξ, τ)

∂ξ

]
...

−1

3

dΨ+(ξ)

dξ

[
∂2R0(ξ, τ)

∂ξ2

]}
dξdη < ∞

(119)

Finally, integrate the last term by parts, factor Ψ+(ξ) in front of all of the
terms and divide by two. Again, the boundary terms at |ξ| → ∞ vanish for
compactly supported data and the expression can finally be written as∫ ∫

R2

Ψ+(ξ)

{
∂R0(ξ, τ)

∂τ
+R0(ξ, τ)

∂R0(ξ, τ)

∂ξ
+

1

6

∂3R0(ξ, τ)

∂ξ3

}
dξdη <∞

(120)
for all compactly supported Ψ+(ξ). Again, we can use Ψ+(ξ) = δ(ξ − ξ∗)
or it is straightforward enough to see that, in order that the integral remain
finite, the expression in curly parentheses must vanish

∂R0

∂τ
+R0

∂R0

∂ξ
+

1

6

∂3R0

∂ξ3
= 0 (121)

where R0 is a function of ξ, τ . This is the Korteweg-deVries equation.
Just to simplify notation a step further, we note that

R0(ξ, τ) = R0(X − T, τ) = h0(X,T, τ) ≡ H(X,T, τ) (122)

that is to say that the right going wave amplitude is exactly equal to the
height of the rightward traveling wave (after it has passed all of the left-
ward traveling wave). Therefore, the KdV equation is an expression for the
modulation of the height of a rightward traveling surface wave in a frame of
reference moving at the linear wave speed, ξ = X − T .
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