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Consider the oscillator with a quadratic potential energy (cubic equation)

ẍ+ ω2x+ αx3 = 0 (1)

with initial data ẋ(0) = 0 and x(0) = x0. Now rescale time by ω and x by x0 so that

ẍ+ x+ εx3 = 0. (2)

with ẋ(0) = 0 and x(0) = 1. Here we have

ε =
αx2

0

ω2
, (3)

and I have made the standard reuse of the original variables. Constructing the energy
equation by multiplying by ẋ, we find

(ẋ)2 + x2 + ε
x4

2
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ε

2
. (4)

The energy curve is a closed ellipse-like shape in (x, ẋ) phase space. Separating variables we
can write
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(5)

Integrating this expression over one full circuit of the closed curve in the x, ẋ phase space
would yield the period of the orbit, T , on the right hand side. Instead, we can integrate
from x = 0...1 to get the quarter period∫ 1
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The only issue now is to evaluate this expression. There is a tricky substitution that I found
that clears things up. Let
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so that the denominator of the integral is√
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When x = 0, u = 0, when x = 1, u = 1 and

2udu
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Substituting these expressions into the integral for the period we have

T = 4

∫ 1
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where we write x(u) because in order to solve this integral we have to express x in terms of
u. The transformation above can be written
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Taking the positive square root and then expanding in ε we find
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So the term in the integral that must be expanded in ε is√
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