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Consider the oscillator with a quadratic potential energy (cubic equation)
i+wr+ar® =0 (1)
with initial data ©(0) = 0 and x(0) = x,. Now rescale time by w and = by zy so that
i+x+er®=0. (2)

with #(0) = 0 and x(0) = 1. Here we have
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and I have made the standard reuse of the original variables. Constructing the energy
equation by multiplying by &, we find
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The energy curve is a closed ellipse-like shape in (z, &) phase space. Separating variables we
can write
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Integrating this expression over one full circuit of the closed curve in the z, 1 phase space
would yield the period of the orbit, T, on the right hand side. Instead, we can integrate
from x = 0...1 to get the quarter period
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The only issue now is to evaluate this expression. There is a tricky substitution that I found
that clears things up. Let
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so that the denominator of the integral is
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When z =0,u =0, when x = 1,u =1 and
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Substituting these expressions into the integral for the period we have
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where we write z(u) because in order to solve this integral we have to express z in terms of
u. The transformation above can be written
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Taking the positive square root and then expanding in € we find
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So the term in the integral that must be expanded in € is
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