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The Van der Pol oscillator is a nonlinearly damped oscillator whose nondimensionalized
ODE expression is

ẍ+ µ
(
x2 − 1

)
ẋ+ x = 0. (1)

It is (apparently) an example of a more general Lienard system where the damping function
is a more general (albeit with some restrictions) function of x.

1 The large damping limit, µ� 1

The standard transformation

µy = ẋ+ µ

[
x3

3
− x
]

(2)

casts the problem as a system of two equations

ẋ = µ [y − F (x)]

ẏ = −x
µ

(3)

where

F (x) =
x3

3
− x, dF

dx
= x2 − 1. (4)

The system in (3) is slow in y and fast in x, unless y ≈ F (x). We want to be able to
“see” the dynamics, so we want to have a time variable which captures the main dynamics
encompassed by this system. Therefore, define a new time variable

τ ≡ t

µ
. (5)

This means that when t is equal to one unit, τ is very small. In this sense, τ is a slow time
variable, capturing the slower dynamics which are sitting in the ẏ equation. In the new time
variable

dx

dτ
= µ2 [y − F (x)]

dy

dτ
= −x

(6)
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1.1 Asymptotic expansion

Let us consider an asymptotic expansion - essentially an infinite series expansion in µ - which
will help us see a good approximation for these equations. We let

x = x0 +
1

µ2
x1 + ...

y = y0 +
1

µ2
y1 + ...

(7)

In principle the approximation can be continued for arbitrarily high terms in this series.
In practice, we only care about the first term or two in the the limit of large µ. Upon
substituting this expansion into the equations we find

dx0

dτ
+

1

µ2

dx1

dτ
+ ... = µ2

[
y0 +

1

µ2
y1 + ...− F

(
x0 +

1

µ2
x1 + ...

)]
= µ2

[
y0 +

1

µ2
y1 + ...− F (x0)−

x1

µ2

dF (x0)

dx
+ ...

]
dy0

dτ
+

1

µ2

dy1

dτ
+ ... = −x0 −

1

µ2
x1 + ...

(8)

where I have expanded F (x) in a Taylor series around x0 in the first equation.
The idea of an asymptotic theory is that we now collect like terms in powers of µ and

equate them to each other. The largest term in the first equation is of power µ2 and the
largest term in the second equation is power of µ0. Therefore we find

0 = y0 − F (x0)

dy0

dτ
= −x0.

(9)

The second largest term in the first equation is power µ0 and the second largest term in the
second equation is power µ−2. Therefore we find

dx0

dτ
= y1 − x1

dF (x0)

dx
dy1

dτ
= −x1.

(10)

1.1.1 Lowest order solution

Looking at equation (9) we find the lowest order solution

y0 = F (x0) =
x3

0

3
− x0 (11)

and, substituting this into the y0 equation we find

dx0

dτ
= − x0

x2
0 − 1

(12)
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Figure 1: The cubic, y0 = F (x0), for the lowest order balance of the Van der Pol oscillator.

The function y0 = F (x0) is plotted in figure 1. So we conclude from this that, for any
initial condition, trajectories move horizontally (i.e. at nearly constant y) until they reach
y = F (x). Above the graph they move to the right and below the graph they move to the
left.

When on the graph, they move according to (12), which is a first order ODE. Equation
(12) can be written as the gradient of a potential

dx0

dτ
= −dV (x0)

dx0

(13)

where

V (x) =
1

2
ln
∣∣x2 − 1

∣∣ . (14)

The potential is plotted in figure 2 and we can see that all trajectories “roll down the
potential to the points x0 = ±1. Notice that the potential becomes unbounded as x→ ±1,
which is an indication that the approximation breaks down. If the trajectory actually went
to x = ±1, then these would be fixed points of the system - which they are not. The points
where the approximation breaks down are the extrema of the function F (x). It is near these
extrema that we have to reconsider the solution.
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Figure 2: The potential for the first order equation in the Van der Pol oscillator.

1.2 Near x = ±1, y = ∓2
3

In this case we can simple return to the original form of the oscillator and realize there is no
issue whatsoever

ẍ+ x = 0 (15)

which is the simple harmonic oscillator. In terms of the variable τ is

d2x

dτ 2
+ µ2x = 0. (16)

So, the reason everything “blows up” near the extrema of the cubic is that the dynamics are
happening faster than time variable, τ , can capture.

2 The small damping limit, µ� 1

In this limit we can use the original form of the Van der Pol oscillator and simply write an
asymptotic expansion

x = x0 + µx1 + ... (17)

At the lowest order in µ we find
ẍ0 + x = 0 (18)
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and the next order gives
ẍ1 + x1 = −

(
x2

0 − 1
)
ẋ0. (19)

I have written the equation with x0 terms on the right hand side because we think of these
equations as follows. We solve the lowest order theory for x0(t) and then the next order
theory looks like an inhomogeneous linear equation for x1(t).

The lowest order solution is

x0(t) = R cos(t+ φ) =
Rei(t+φ) +Re−i(t+φ)

2
(20)

The inhomogeneous first order equation is

ẍ1 + x1 = R sin(t+ φ)
(
R2 cos2(t+ φ)− 1

)
= R

[
ei(t+φ) − e−i(t+φ)

2i

]{
R2

4

[
e2i(t+φ) + 2 + e−2i(t+φ)

]
− 1

}
= e3i(t+φ) R

3

8i
+ ei(t+φ) R

2i

{
2R2

4
− 1− R2

4

}
− e−i(t+φ) R

2i

{
2R2

4
− 1− R2

4

}
− e−3i(t+φ) R

3

8i

= sin(t+ φ)

{
R3

4
−R

}
+ sin (3 (t+ φ))

R3

4
.

(21)

The way you solve this equation is that you find, first, the homogenous solution

x = R1 cos(t+ φ1) (22)

and then you find the particular solution for each of the inhomogeneous terms on the right
hand side.

You can check that

x = − sin (3 (t+ φ))
R3

32
(23)

solve the equation for the second inhomogeneous term. However, the first inhomogeneous
term has the same oscillation frequency as the frequency of the inhomogeneous oscillator.
So if we guess a solution x ∝ sin(t + φ) then we will find that it cannot be a solution with
that inhomogeneity. Instead we guess a form

x = At cos(t+φ), ẋ = A cos(t+φ)−At sin(t+φ), ẍ = −2A sin(t+φ)−At cos(t+φ) (24)

which we substitute into the equation to find

− 2A sin(t+ φ) = sin(t+ φ)

{
R3

4
−R

}
(25)

meaning that

A =
1

2

[
R− R3

4

]
(26)
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If we right the whole solution down for x1 we have

x1 = R1 cos(t+ φ1) +
1

2

[
R− R3

4

]
t sin(t+ φ)− sin (3 (t+ φ))

R3

32
. (27)

Notice that the first and last terms are always oscillating, so their magnitude never
grows beyond a certain limit (R3/32, for example). On the other hand the middle term is
an oscillating function multiplied by t - so it keeps growing as time increases.

But this increase means that x1 will, at some time, grow bigger than x0 - and this means
that x0 does not make a good approximation of the solution anymore. This time is when

µt ≈ 1 (28)

which for small µ is a large time.

2.1 The method of multiple timescales.

One of the most powerful, and sometimes mind boggling, methods used in asymptotics is
the method of multiple timescales. The idea is that we have already seen there are 2 time
scales in the problem - a fast one associated with the oscillation and a slow one (t ∼ µ−1)
associated with the resonance. We try to capture the dynamics on the slow time scale by
introducing a second variable describing time and then assuming the two time variables are
independent. This is a heckuva stretch and you should not necessarily take my word for it
that it works. But I will show you how it works and then you can try to concoct examples
on your own. The idea is to let

τ = µt (29)

so that when t is large (a lot of time has transpired) then τ is about equal to one. Then,
and this is the mind bender, we assume that we need to study the equations on both the t
and the τ timescale. Therefore we replace the time derivative by

d

dt
→ ∂

∂t
+ µ

∂

∂τ
. (30)

With this replacement, the second derivative becomes

d2

dt2
→ ∂2

∂t2
+ 2µ

∂2

∂τ∂t
+ µ2 ∂

2

∂τ 2
(31)

These new terms on the right side are small, but they have to be included at the higher
orders of the theory. The equations become

∂2x

∂t2
+ 2µ

∂2x

∂τ∂t
+ µ2∂

2x

∂τ 2
+ µ

(
x2 − 1

) [∂x
∂t

+ µ
∂x

∂τ

]
+ x = 0. (32)

Again we substitute the asymptotic expansion and we find that the lowest order of the theory
is unchanged

∂2x0

∂t2
+ x0 = 0 (33)
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except for the partial derivative appearing in this version. The solution is similar to before
except the terms that were parameters in the previous solution now become functions of the
slow time variable

x0(t, τ) = R(τ) cos(t+ φ(τ)). (34)

In the first order correction only one new term appears

∂2x1

∂t2
+ x1 = −2

∂2x0

∂τ∂t
+
(
x2

0 − 1
) ∂x0

∂t
. (35)

The right hand side is exactly the same as we’ve already calculated, except for the first term,
which is

− 2
∂2x0

∂τ∂t
=

∂

∂τ
[2R(τ) sin(t+ φ(τ))] = 2

dR

dτ
sin(t+ φ(τ)) + 2R

dφ

dτ
cos(t+ φ) (36)

and the first order equation becomes

ẍ1+x1 = 2
dR

dτ
sin(t+φ(τ))+2R

dφ

dτ
cos(t+φ)+sin(t+φ)

{
R3

4
−R

}
+sin (3 (t+ φ))

R3

4
. (37)

Finally, we recognize that all the terms on the right hand side that are resonant with the
homogeneous solution will only cause the solution x1 to increase with time. If we want to
avoid this, we have to remove the resonant terms on the right hand side by equating them
to one another - this is called the Fredholm alternative. Therefore

2
dR

dτ
+

[
R3

4
−R

]
= 0 (38)

and

2R
dφ

dτ
= 0. (39)

These two equations say that the phase is constant, but that the radius of the orbit increases
according to

dR

dτ
=
R

2

[
1− R2

4

]
. (40)

This is a simple one dimensional system that looks a lot like the pitchfork bifurcation. It
has equilibria at

R = 0 (41)

and
R = 2. (42)

The second equilibrium is a circle of radius 2 - which is the limit cycle.
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2.2 Finding the limit cycle using an energy argument

Multiplying the equation for the Van der Pol oscillator (1) by ẋ we find

d

dt

[
ẋ2 + x2

2

]
= −µ

(
x2 − 1

)
ẋ2. (43)

The right hand side is the time derivative of the total energy of an undamped oscillator. In
the absence of damping, µ = 0, the energy would be conserved and the solution would be a
circle in the (x, ẋ) phase plane.

The general solution to the oscillator ODE is

x = R cos(t+ φ) (44)

with period T = 2π. If we integrate the energy over one period we find

∆E = −µ
∫ T

0

(
x(t)2 − 1

)
ẋ(t)2 dt. (45)

A simple, qualitative argument for finding the limit cycle goes as follows. Can we find
the solution to the undamped oscillator equation (i.e. find R and φ) such that, when it is
subjected to damping, the energy is still conserved? In order to have it conserved, the right
hand side of (45) must be zero. Substitute (44) into the right hand side of (45) to find

0 =

∫ T

0

(
R2 cos2(t+ φ)− 1

)
R2 sin2(t+ φ) dt

= R2

∫ T

0

(
R2 cos2(t)− 1

)
sin2(t) dt since the integrand is periodic

=

∫ 2π

0

(
R2 cos2(t) sin2(t)− sin2(t)

)
dt

=

∫ 2π

0

(
R2 sin2(2t)

4
− sin2(t)

)
dt.

(46)

Now the average of sin2(nt) from [0, 2π] is 1
2
, therefore each of the two terms in the integral

evaluate to 2π · 1
2

= π and we find

0 =
R2

4
− 1 =⇒ R = 2, (47)

which is the same result we got from the asymptotic method. This method of averaging
essentially creates the periodic orbit by finding the orbit over which the average dissipation
is equal to zero.
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